

Beyond Nano, Experience Real Pico.

PICOCARE 450

- Better Performance of PICOCARE compared to Q/SW.
- Ultimate Performance of PICOCARE_MLA in
 Treatment

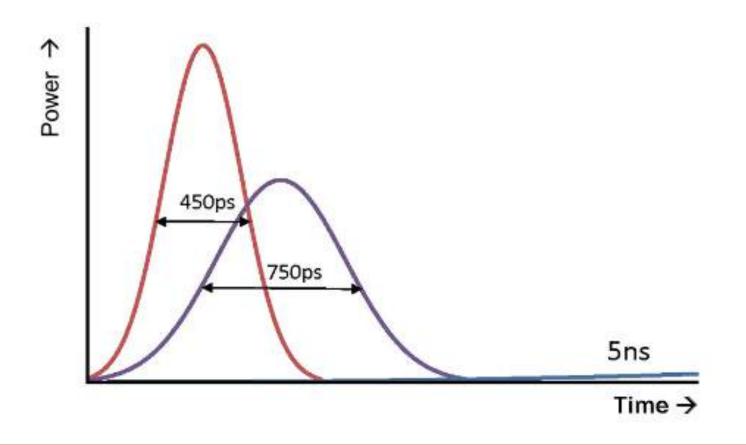
Beyond Nano, Experience Real Pico.

*이 자료는 사내교육용 입니다.

Better Performance of PICOCARE compared to Q/SW

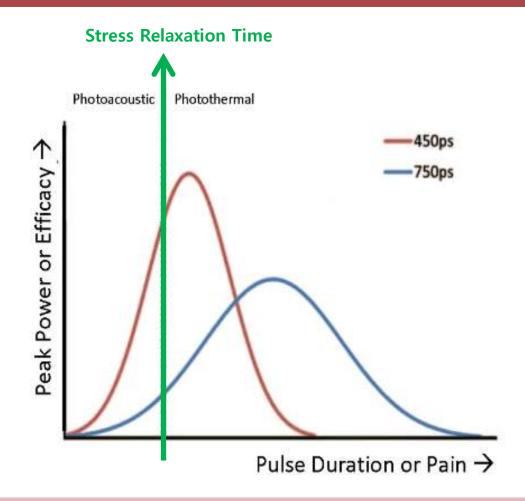
- Higher peak power
- The less photothermal effect, The more photoacoustic effect

Pulse Duration

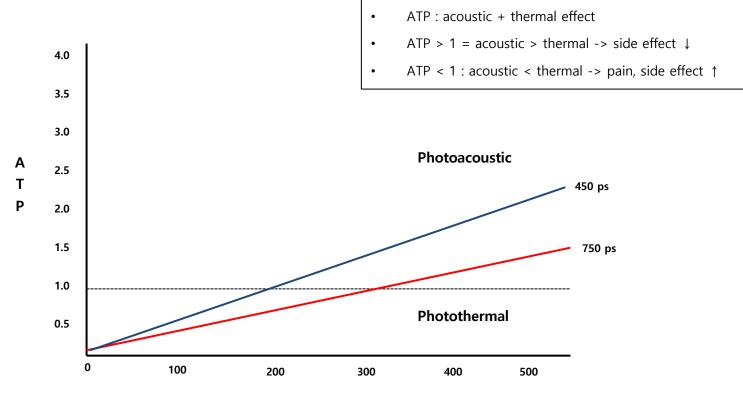

	Prefix	Symbol	Numerical Value	Power of 10 Equivalent	
Γ	Milli	ms	0.001	10 ⁻³	 Long pulse duration Photothermal energy
L	Micro	μs	0.000001	10 ⁻⁶	 hair removal, vascular
Γ	Nano	ns	0.00000001	10 ⁻⁹	lesion treatment
L	Pico	ps	0.00000000001	10 -12	→ • Short pulse duration
	femto	fs	0.0000000000000000000000000000000000000	10 ⁻¹⁵	Photoacoustic effect
	atto	as	0.0000000000000000000000000000000000000	10 ⁻¹⁸	Pigments removal

Short pulse duration for pigments treatments

Principle	Short pulse -> peak power ↑ -> a buildup of pressure (= stress) -> fragmentation of pigments particle						
Features	 The shorter the pulse duration, the higher the peak power. photoacoustic effect ↑ photothermal effect ↓ Fragmentation of pigments treatments ↑ thermal damage ↓ 						


Pulse duration	Nanosecond lasers ($\frac{1}{10^{-9}}$)	nes shorter Picosecond lasers ($\frac{1}{10^{-12}}$)
Principle	Photothermal stress (Photoacoustic + photothermal effects)	Phtoacoustic stress (Photoacoustic effects)
Descripion	rapid heating -> expanding the particles -> thermal stress -> fracture of particle	Photoacoustic stress -> fracture of particle
Action	Large pigments	Both large and small pigments
Features	SPTL (Selective photothermolysis)	Various particle size per color is effective to Tatto treament
Number of Treatment	1	\downarrow
Side effect	 ↑	4

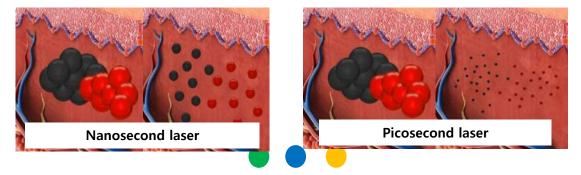
Comparison of peak power


- At the same energy level, the peak power can varies with pulse duration.
- General effect shows the shorter the pulse duration, the higher the peak power.

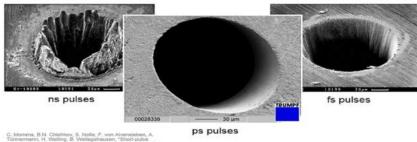
SRT (Stress Relaxation Time)

- Prior to SRT, a photothermal effect is followed by the photoacoustic effect.
- 450ps is more effective than that of 750ps in the pigment lesion treatment.

ATP (Acoustic Thermal Pressure)



Ink Particle Size (nm)


- ATP at 450ps is higher than 750ps at the same pigment particle size
- 450ps is larger than 750ps, breaking effect of small pigment particle is higher and less pain.

Picosecond laser

- Low energy such as 1/3 or 1/2 used in nanosecond lasers can be effectively treated.
- Nanosecond laser breaks rocky lesions into pebble size, while Picosecond laser does sandy crush.

- It is also effective for Green, Blue, Yellow lesions.
- When the nanosecond laser is irradiated, there is a risk that the temperature is unevenly distributed to t he lesion, causing damage to surrounding tissues or rough edges. However, in the case of Picosecond la ser, the edges are neatly cut as shown in the picture data and the set of the set of

PICOCARE specification

Туре					
Wavelength			1064nm	n, 532nm	
Pulse duration		-	750ps		450ps
Peak power	1	064r	ım : 0.8GW		1064nm:1.33GW
Main B	ody			Handpi	iece
			Zoom (2~10mm) Collimation (7mm)		Image: Constraint of the second se
		O p t I o n			Filter : 595nm Filter : 660nm

PICOCARE indication

	Therapeutic lesion
Epidermis	age pots, Becker nevus, Café-Au-Lait
pigments	freckles, lentigines, melasma
Dermis pigments	ABNOM, Ito nevus, Ota nevus, PIH
Tattoos	all colors
Skin rejuvenation	uneven skin color, skin texture resurfacing, fine wrinkles, large pores
Scars	acne scars, chicken pox scars (ice picked, round, box, rolling type)

<ice picked scar>

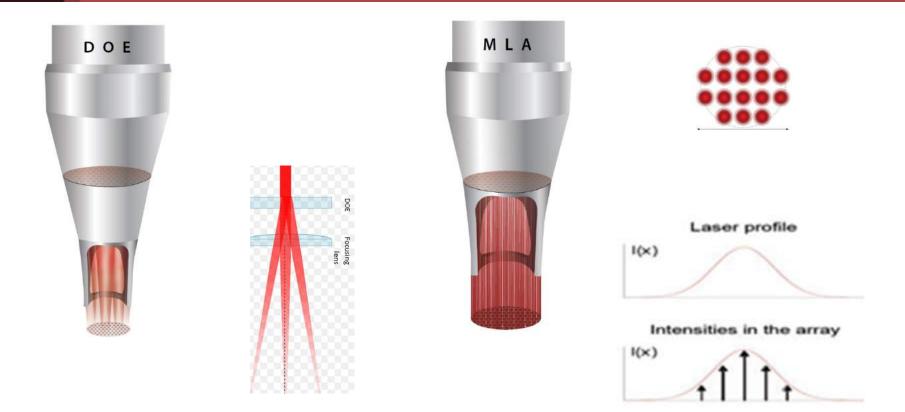
<round scar>

<box scar>

<rolling scar>

*이 자료는 사내교육용 입니다.

Ultimate Performance of PICOCARE_MLA in Treatment


- DOE vs MLA
- LIOB (Laser Induced Optical Breakdown)

Lens type : Comparison of DOE and MLA

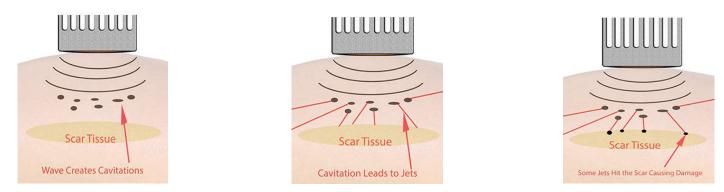
DOE	ROE		
Diffractive Optical Elements	Refractive Optical Elements		
Optical properties using diffraction (wave)	Optical properties using refraction		
Diffractive element Input laser beam Spot array	Incident light Incident light Incident light Focused light Microcell Substrate		

Due to the diffractive nature of the lens, laser beam can generate multiple beams which evenly divided and irradiated. After attaching an MLA (Focusing lens), energy can be concentrated in each dot due to the refractive property of the lens,

H/P : Comparison of DOE and MLA

By the help of uniformed irradiated energy, it is easy to use when resurfacing skin, When the energy reached by 20 ~ 30 %, it is concentrated in one place and the incidence of side effects such as PIH can be increased.

It is useful to treat lesions in the sub dermal layer by using energy that is focused on the center of each dot. Also, It is effective to use it for toning because energy is not concentrated too much in one place while moving it.

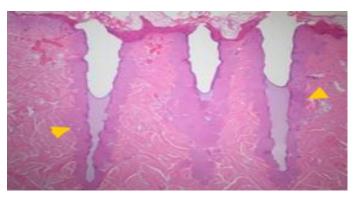

PICOCARE_MLA

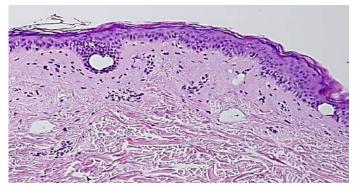
PICOCARE_MLA is able to collect energy up to 15 times higher in each dot using a focusin g lens. Low energy can increase the therapeutic effect, it can reach to the dermis, which can increase the effectiveness of treatment for dermis.

Handpiece	Parameter	Value	
	Energy	140mJ	
1064nm, 7mm	Energy/ Spot	1mJ	
MLA	Peak Power	1.3MW	
	Spot size	150Um	
	Area	0.000176625 cm ²	
	Peak Power Density	7.3 GW/Cm ²	
	Energy	140mJ	
1064nm, 7mm,	Energy/ Spot	140mJ 1mJ 1.3MW 1.3OUm 0.000176625 cm² 7.3 GW/Cm²	
Zoom	Peak Power	187MW	
	Spot size	7mm	
	Area	0.38465	
	Peak Power Density	0.486GW/Cm ²	

LIOB (Laser Induced Optical Breakdown)

Principle	Ultra short pulse duration in picosecond laser + focused intensity of laser by MLA \Rightarrow LIOB (Laser Induced Optical Breakdown)							
	LIOB ->			Effect				
Process	Only effective to dermal layer	Electron, ion, molecule Disassemble and activation	empty space is made in the dermal layer	Increase Collagen, elastin, Mucin				
Effect		damage to deep scars with side effects, shorter down-t	5 5 1					

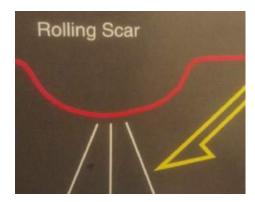

*Reference Docs : Habbema, L., et al (2012). Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation , *Journal of Biophotonics*, *5(2)*, 194-199.


Traditional Acne Scar Treatment : Fractional Laser

Method	Shaving skin layer				
Pros	It makes flatten the rugged scars and available for the treat ment for discoloration	Cons	Energy affects on only epidermis and dermis upper layer (papillary dermis) Long down-time, Skin band can be formed if affected to the sub-dermal layer (dermal dermis). It is possible to form a hypertrophic scar during wound Recovery thermal-damage.		
PICO CARE MLA	Adjustable energy can target scar Much less pain, Shorter down-tim No damage to epidermis	car located in epidermis ~ lower layer of dermis -time, no side effect			

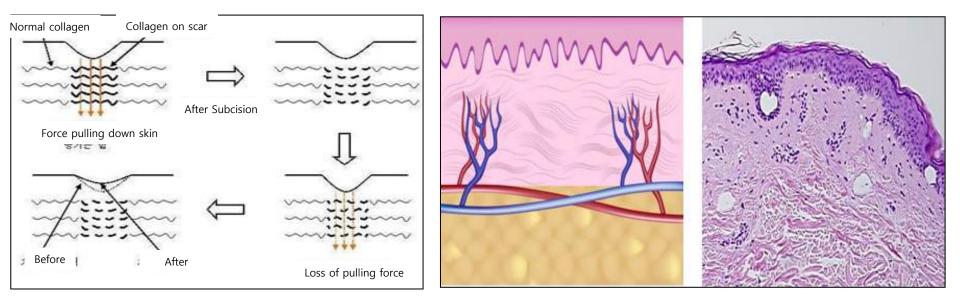
Comparison of Fractional and MLA

	Fractional Ablative Treatment	Picocare MLA Treatment	
Mechanism	Thermal Ablation Residual thermal damage along tissue	LIOB(Laser Induced Optical Breakdown) No residual thermal damage	
Operation	Require topical anesthesia cream Procedural time over 1hour		
Downtime	Crusting up to 2 weeks after treatment Discomfort pain High chance of side effect such as PIH	Micro-crusting up to 7days after treatment Tolerable pain Less Chance of side effect such as PIH	
Result	Good result for Fine wrinkles, large pores, acne scars(shallow), texture with several fractional laser treatments	Good result for Fine wrinkles, large pores, acne scar(Both shallow and Deep), texture with 1 st MLA fractional laser treatment	



<Fractional>

Traditional Acne Scar Treatment : Subcision


Method	hod Scar adhesion with 18G injection needle, Exfoliation					
Pros	Round scar effect ros It is good enough even a small number of treatment		Pain +++++ Biceps+++ Downtime+++ It is less effective for Ice picked scar, box scar Adverse effects can result in hyperhidrosis ++			
PICO CARE MLA	It is effective for round scar, ice picked scar, box scar. Less pain, shorter down-time There are less side-effect such ash Hypertrophic formation.					

<subcision procedure>

Comparison of Subcision and MLA

<Subcision>

<MLA>

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
Tattoo	1064nm	Tattoo-Body	2.0	3	2	1	-

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
Tattoo	1064nm	Tattoo-Body	2.0	3	2	2	8

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
Tattoo	1064nm	Tattoo-Body	2.2	3	2	3	6

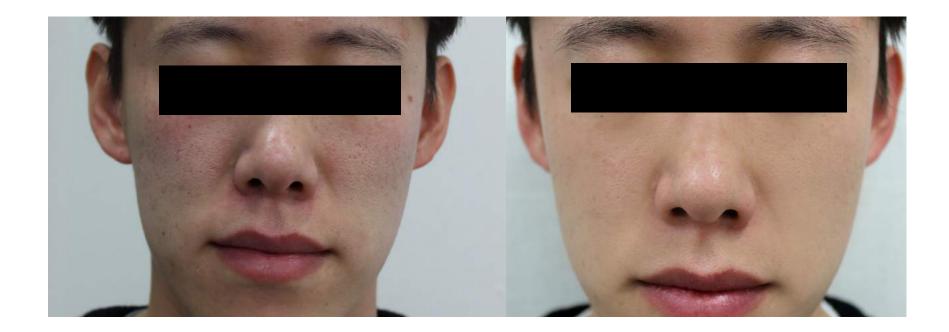
Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
Lentigines	L532nm	Lentigines	0.2	3	2	2	6

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
Lentigines	1064nm	Lentigines (Dark Brown)	0.4	4	2	1	-

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
Pigmentation	1064nm	Toning- Melasma	0.8	10	10	6	2

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
Rosacea Lentigines Melasma	1064nm	Toning- Melasma	0.8	10	10	6	1-2

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
PIH	1064nm	Toning-PIH	0.5-0.6	8	10	8	2-3


L	Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
Ac	cne Scar	1064nm	MLA Acne Scar (Deep)	3.0	4	2	1	-

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
SCAR	1064nm	MLA-Deep Scar	3.0	3	1	1	-
Rejuvenation	1064nm	MLA-Toning	0.2	10	10	1	-
Rejuvenation	L532nm	MLA-Toning	0.1	7	2	1	

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
Large Pores Acne Scar	1064nm	MLA Skin Rejuvenation	3.0	4	2	3	4

Lesion	Wavelength	Mode	Fluence (J/cm²)	Spot Size (mm)	Frequency (Hz)	Tx Time	Interval (week)
ABNOM/	1064nm	Pico Toning- Melasma	0.8	10	10	7	1-2
Lentigines	1064nm	Q/S Toning	2.5	7	10		

THANK YOU

