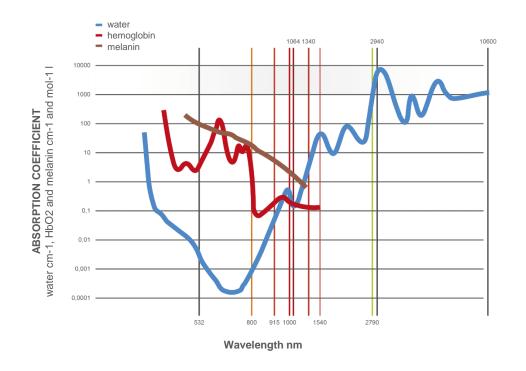
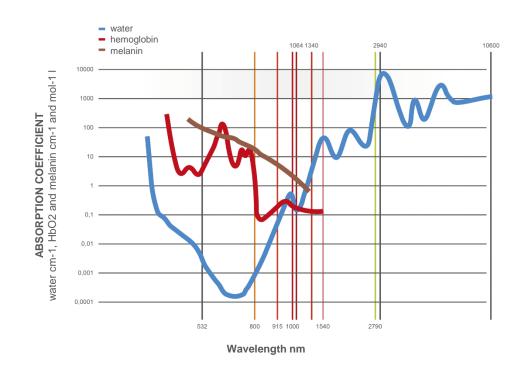


prepared and revised by Antonio Olivatto and Giovana Milani; SEP 2018 ETHEREA-MX_DualMode_Apresentacao_Produto_e_Treinamento_rev5



target chromophore and absorption curve


- technology that revolutionized the dermatology field, introduced in 2004 by Mainstein et al *
- works with tissue vaporization (ablation)
- there are 3 wavelengths among the ablative fractional lasers;
 - 2,790 nm solid-state LASER, Er: YSGG (erbiumdoped:yttrium-scandiumgallium-garnet)
 - 2,940 nm solid state laser Er:YAG (erbium-doped:yttriumaluminium-garnet)
 - **10,600 nm:** gas LASER, CO2

^{*}Manstein et al. FRACTIONAL PHOTOTHERMOLYSIS: A NEW CONCEPT FOR CUTANEOUS REMODELING USING MICROSCOPIC PATTERNS OF THERMAL INJURY. LASERS Surg Med 2004;34:426-38.

target chromophore and absorption curve

- ratio of target
 chromophore and
 absorption curve as a
 function of wavelength;
- high affinity for H₂O,
 which induces an
 naturally ablative
 (vaporization) effect in the
 tissue;
- Er:YAG features 10 times greater water absorption when compared to the CO2 LASER;

ablation, coagulation and ablation-coagulation

ABLATION	COAGULATION
complete removal of the	inflammatory effect in the
epithelial layer through	region, tending to reach
superficial vaporization effect	deeper layers of tissue
occurs due to the high affinity	occurs due to the low affinity
of the LASER for the water	of the LASER for the water
found in the tissue	found in the tissue

ablation, coagulation and ablation-coagulation

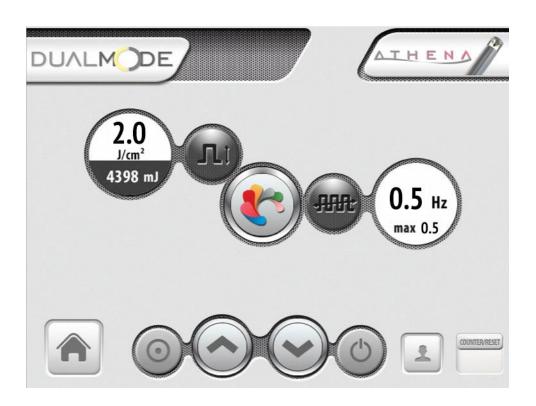
Comparative	ABLATIVE	NON-ABLATIVE
target chromophore	H2O	H2O
chromophore absorption	higher	lower
direct effect	vaporization	coagulation
response time	48-72 hours	24 hours
general advantages	lasting results	satisfactory treatment
	clear improvement	extra-face treatment
	high level of patient satisfaction	safety
	lower number of sessions	reduced erythema
		downtime
		higher number of recommendations
		higher versatility

ablation, coagulation and ablation-coagulation

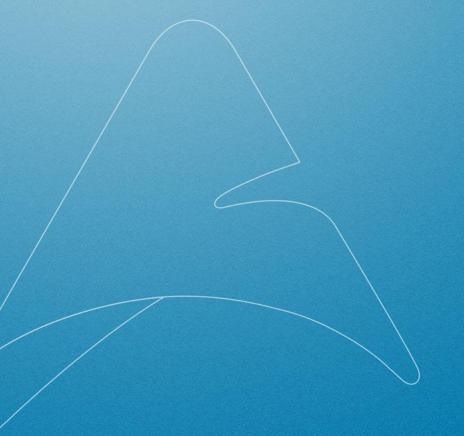
PROS	CONS
lower number of sessions compared to non-ablative	longer relative recovery time
significant and continued results	prolonged erythema and greater care during the post-treatment
strongly recommended for drug delivery	higher risk of PIH

- ablative LASER 2,940 nm, Er:YAG;
- works with short and long pulses as well as double pulses
 (DualMode®) to provide more versatility
- spots with automatic recognition
- square applicator greater uniformity;
- can be associated with various technologies

DUALM DE


technical characteristics

	DualMode®
wavelength	Er:YAG 2,940 nm
pulse time	300 µs at 5 ms 400 ms in smooth pulse
operation frequency	up to 5 Hz
maximum energy	up to 60 mJ/mtz
tips	Ø 8 mm and 100/400 mtz/cm ²
	Ø 6 mm collimated
	InLift, intra-oral and lip treatment
optional	Ø 2.5 mm collimated
	ATHENA 90+ ATHENA 360
	with integrated fume extractor coupler and
	adapter



parameterization of interface and usability

- energy: up to 60 mJ/mtz, referring to the energy delivered in the treatment area;
- pulse time: 0.3 to 5 ms, with single or double pulse (DualMode®), or 400 ms for ATHENA and inLift (smooth mode);
- frequency: up to 5 Hz;
- spot size: fractional or collimated, depending on the recommendation and purpose of the treatment;

ETHEREA-MX® DualMode®: care and maintenance

preventive maintenance and special care

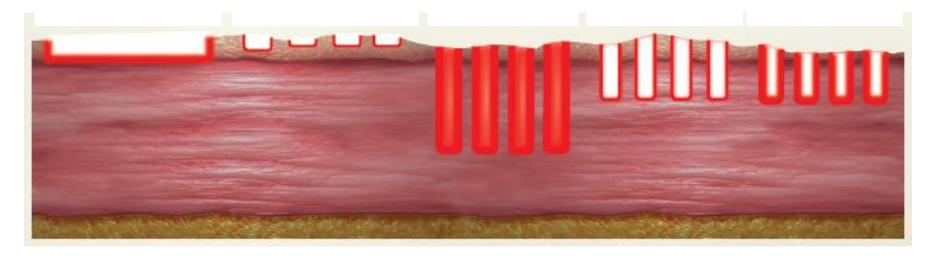
- cleaning, disinfection of spot applicators: apply isopropyl alcohol (preferably) using cotton swabs and/or gauze on the lenses and spacers;
- spacers can be washed with soap and water and/or enzymatic cleaner;
- inLift applicator: can be autoclaved or washed with soap and water or enzymatic cleaner
- clean after each application;
- assembly care: 100 mtz/cm² spot lens;
- pro rata warranty on the tip: 500,000 shots;
- transport with care, as misalignment could result in ineffective treatment;

preventive maintenance and special care

 learn more about the maintenance procedures for ETHEREA-MX on our YouTube channel;

ETHEREA-MX® DualMode®: practice and clinical treatment

RECOMMENDATIONS


- ablative rejuvenation, stretch marks, acne scars, surgical scars (older or hypertrophic);
- LASER peel: pigmentary lesions, keratoses, acrochordons, syringomas
- drug delivery;
- intra-oral and lip treatment;
- association with other treatments or technologies;

ablation, coagulation and ablation-coagulation

Ablative Skin Resurfacing (CO₂, Er:YAG 2,940 nm) 10-200 µm Fractional Ablative Superficial Skin Resurfacing (CO₂, Er:YAG 2,940 nm) 10-70 µm Nonablative Fractional Skin Resurfacing 600-1,000 µm Fractional Ablative Skin Resurfacing 100-300 µm DualMode® Fractional Ablative/Coagulative Skin Resurfacing (CO2-like) 100-300 µm

- two types of Er:YAG LASER LASER peel, with purely ablative shots (single-moded LASERs), and double pulse LASERs, with ablative and combined coagulative shots (dual-moded LASERs);
- DualMode® technology: ablative and coagulative pulse in a single shot, simulating the coagulative effect inherent to CO₂ LASERs;

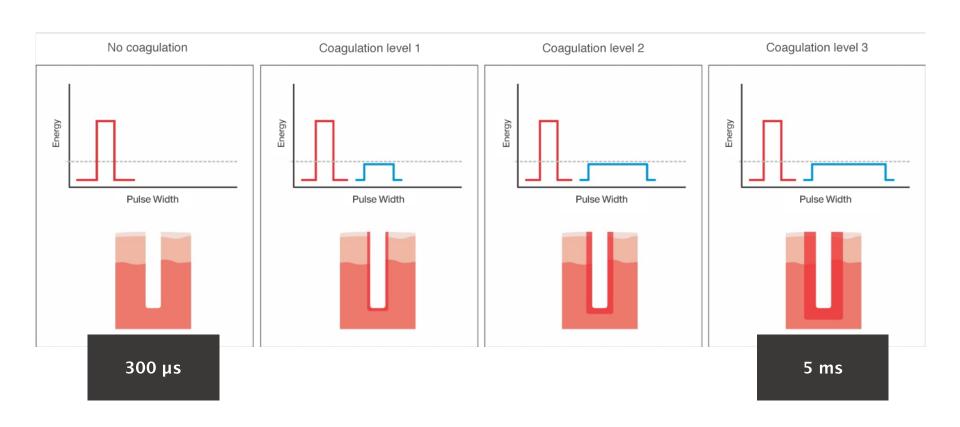
DUALM DE

fractional ablative resurfacing

Ablative Skin Resurfacing (CO₂, Er:YAG 2,940 nm) 10-200 µm Fractional Ablative Superficial Skin Resurfacing (CO₂, Er:YAG 2,940 nm) 10-70 µm Nonablative Fractional Skin Resurfacing 600-1,000 µm Fractional Ablative Skin Resurfacing 100-300 µm DualMode® Fractional Ablative/Coagulative Skin Resurfacing (CO₂-like) 100-300 µm

SINGLE MODE: pure ablation (LASER peel), with 300 to 500 µs pulse time

pure COAGULATION, with non-ablative fractional LASER; SINGLE MODE: coagulation (CO₂-like), with pulse time starting at 1 ms; DUAL MODE: dual pulse, with ablation and coagulation effect combined in the same shot;


fractional ablative resurfacing

pulse time	pulse time
300-500 μs	1-5 ms
purely ablative effect	deeper than the previous one
also known	recommended for
as LASER peel	light rejuvenation
recovery time:	recovery time:
from 1 to 2 days	from 2 to 4 days
most frequently used for drug delivery	take into account the RTD

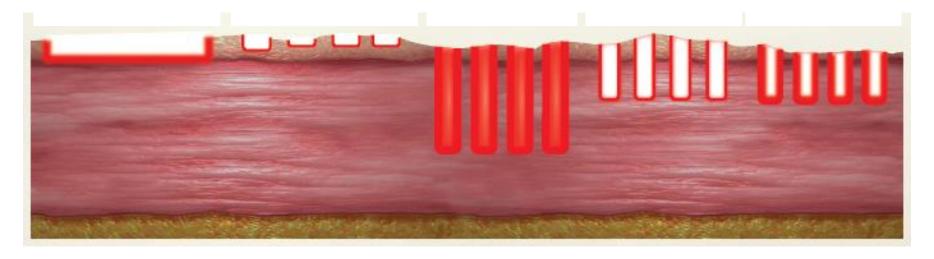
fractional ablative resurfacing

RTD: RESIDUAL THERMAL DAMAGE;

in Portuguese: DANO TÉRMICO RESIUDAL

fractional ablative resurfacing

- use LASER peel to take advantage of the damaged tissue and increase the selective permeability of active mediums, drug delivery;
- different possible combinations of active mediums available on the market;
- can be associated with other technologies, such as: IPL-Sq for pigmentary lesions and ACROMA-QS for tattoos



DUALM DE

fractional ablative resurfacing

Ablative Skin Resurfacing (CO₂, Er:YAG 2,940 nm) 10-200 µm Fractional Ablative Superficial Skin Resurfacing (CO₂, Er:YAG 2,940 nm) 10-70 µm Nonablative Fractional Skin Resurfacing 600-1,000 µm Fractional Ablative Skin Resurfacing 100-300 µm

DualMode® Fractional Ablative/Coagulative Skin Resurfacing (CO₂-like) 100-300 µm

DUALMODE

- ablative shot (short pulse), followed by another coagulative shot (long pulse);
- lower risk of hyperchromia than conventional stacking, more aggressive and deeper
- recovery time: 3 to 7 days, depending on the recommendation and desired aggression

RTD: RESIDUAL THERMAL DAMAGE;

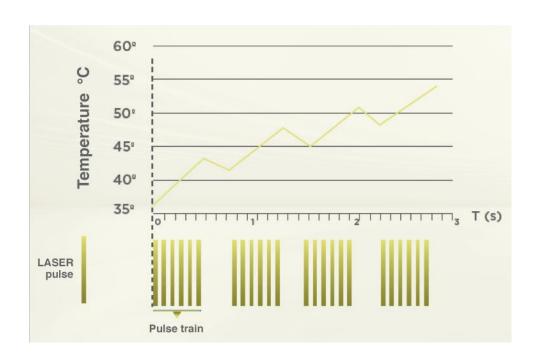
in Portuguese: DANO TÉRMICO RESIUDAL

fractional ablative resurfacing

energy mJ/mtz	the higher it is the more aggressive
fluence mJ/cm ²	the higher it is the more aggressive
number of passes	the higher it is the more aggressive
pulse time <500 μs	purely ablative effect
pulse time <1 ms	coagulative effect
double pulse, DualMode	first, ablative pulse followed by coagulative pulse

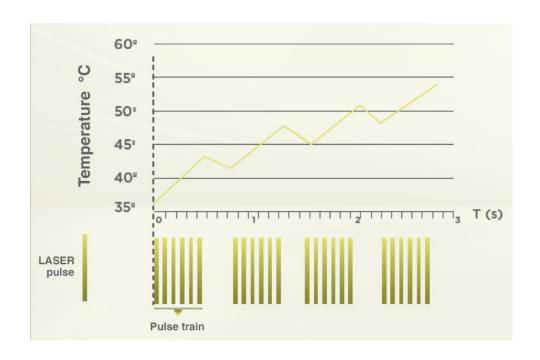
 $^{^{*}}$ the longer the pulse time, the greater the coagulative effect at the shot

^{**}DUALMODE pulse is more aggressive than the single shot



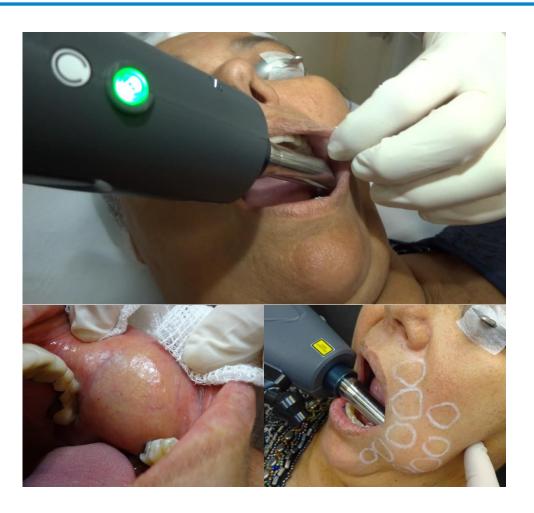
- interval between sessions: monthly or every 2 months; depends on the work mode;
- number of sessions: 3 to 5;
- pre-treatment: prophylaxis for herpes, if needed;
- topical anesthetic: thoroughly remove prior to application;
- special care during post treatment:
 - drug delivery can be performed;
 - assess the need for LED in the post-immediate;
 - at home: iced chamomile tea compresses, Bepantol® or Cicaplast® Balm;
 - sunscreen: avoid for 24 hours (no color) and 48 hours (with color);
 - · caution with makeup;

inLift: treatment with smooth pulse



- works with pulse train as smooth pulse: a sequence of 8 shots (on/off), totaling 400 ms;
- painless, smaller ablative effect and no downtime or the need for specific care during post-treatment;

inLift: treatment with smooth pulse



- for LASER lifting and fill effect in the nasolabial region;
- recommended for mild to moderate aging and flaccidity;
- also used as complementation to the ATHENA treatment (external area, for tightening);
- Important: careful when placing the fractionator

inLift: treatment with smooth pulse

- with fractionator;
- on average, energy ranging from 30-45 mJ;
- ~100-150 shots in the jugal region and ~100 shots in the nasogenian sulcus;
- depends on the overall objective of the treatment and the region where the results should be focused;

kindly provided by: Moysés da Costa Lemos, MD, MSc

Dermatologist; São Carlos/SP, Brazil. Brazil

VYDENCE® Medical USA Office

3340 Hillview Avenue Palo Alto, CA. United States

VYDENCE® Medical Manufacturing plant and R&D Rua Aldo Germano Klein, 359. CEAT 13573-470 São Carlos, SP. Brazil VYDENCE® Medical Training Center

Av Fagundes Filho, 486, SI 96. S Judas 04304-000. São Paulo, SP. Brazil

ADAVIUM® Medical BRA Office

Av. Queiroz Filho, 1560. T Gaivota 05319-000. São Paulo, SP. Brazil

Uma empresa Adavium Medical

BIBLIOGRAPHICAL REFERENCES

FRACTIONAL ABLATIVE LASER Er: YAG 2,940-nm

- Costa MLM, Azevedo LCM, Stock FS, Grohs LMH, Wanczinski MI, Cunha PR, Campos VB. ESTUDO COMPARATIVO DA EFICÁCIA DO USO DE LASER 2940-NM, 1340-NM E LIP NO REJUVENESCIMENTO GLOBAL DAS MÃOS. Work presented in the V Simpósio de Cosmiatria e LASER da SBD. São Paulo. SP. 2013
- Jordão J, Campos V, Santos T, Pinto C, Trevisan F, Pitassi L. FRACTIONAL ABLATIVE LASER VERSUS FRACTIONAL ABLATIVE AND COAGULATIVE LASER FOR THE TREATMENT OF PHOTODAMAGED SKIN IN ARMS AND FOREARMS. Poster originally presented at ASLMS Annual Conference, 2011
- Morais OO, Costa IMC, Gomes CM, Shinzato DH, Ayres GMC, Cardoso RM. THE
 USE OF THE ER:YAG 2940 NM LASER ASSOCIATED WITH AMOROLFINE LACQUER
 IN THE TREATMENT OF ONYCHOMYCOSIS. An Bras Dermatol. 2013; 88(5):8635.
- Karsai S, Czarnecka A, Jünger M, Raulin C. ABLATIVE FRACTIONAL LASERS (CO2 AND ER:YAG): A RANDOMIZED CONTROLLED DOUBLE-BLIND SPLIT-FACE TRIAL OF THE TREATMENT OF PERI-ORBITAL RHYTIDES. LASERS Surg Med. 2010 Feb;42(2):160-7.
- Fitzpatrick RE, Rostan EF, Marchell N. COLLAGEN TIGHTENING INDUCED BY CARBON DIOXIDE LASER VERSUS ERBIUM: YAG LASER. LASERS Surg Med. 2000:27(5):395-403.
- Khatri KA, Ross V, Grevelink JM, Magro CM, Anderson RR. COMPARISON OF ERBIUM:YAG AND CARBON DIOXIDE LASERS IN RESURFACING OF FACIAL RHYTIDES. Arch Dermatol. 1999 Apr;135(4):391-7.
- 7. Niwa A, Macéa J, Nascimento D, Torezan L, Osório N. USE OF 2,940 ERBIUM FRACTIONAL LASER IN THE TREATMENT OF FACIAL PHOTODAMAGED SKIN. 15 MONTHS FOLLOW-UP. Surg & Cosmetic Dermatol. 2009;2(1)
- Khatri KA, Mahoney D, Hakam L. HIGH-FLUENCE FRACTIONAL TREATMENT OF PHOTODAMAGED FACIAL SKIN USING A 2940 NM ERBIUM:YTTRIUM-ALUMINUM-GARNET LASER. J Cosmet Laser Ther. 2012 Dec;14(6):260-6.

- Paasch U, Haedersdal M. LASER SYSTEMS FOR ABLATIVE FRACTIONAL RESURFACING. Expert Rev Med Devices. 2011 Jan;8(1):67-83.
- Dierickx CC, Khatri KA, Tannous ZS, Childs JJ, Cohen RH, Erofeev A, Tabatadze D, Yaroslavsky IV, Altshuler GB. MICRO-FRACTIONAL ABLATIVE SKIN RESURFACING WITH TWO NOVEL ERBIUM LASER SYSTEMS. LASERS Surg Med. 2008 Feb;40(2):113-23.
- El-Domyati M1, El-Ammawi TS, Medhat W, Moawad O, Mahoney MG, Uitto J. MULTIPLE MINIMALLY INVASIVE ERBIUM: YTTRIUM ALUMINUM GARNET LASER MINI-PEELS FOR SKIN REJUVENATION: AN OBJECTIVE ASSESSMENT. J Cosmet Dermatol. 2012 Jun;11(2):122-30.
- 12. Trelles MA, Mordon S, Velez M, Urdiales F, Levy JL. RESULTS OF FRACTIONAL ABLATIVE FACIAL SKIN RESURFACING WITH THE ERBIUM:YTTRIUM-ALUMINIUM-GARNET LASER 1 WEEK AND 2 MONTHS AFTER ONE SINGLE TREATMENT IN 30 PATIENTS. LASERS Med Sci. 2009 Mar;24(2):186-94.
- Ross EV, McKinlay JR, Sajben FP, Miller CH, Barnette DJ, Meehan KJ, Chhieng NP, Deavers MJ, Zelickson BD. USE OF A NOVEL ERBIUM LASER IN A YUCATAN MINIPIG: A STUDY OF RESIDUAL THERMAL DAMAGE, ABLATION, AND WOUND HEALING AS A FUNCTION OF PULSE DURATIDFFON. LASERS Surg Med. 2002;30(2):93-100.
- 14. Trelles MA, Vélez M, Mordon S. CORRELATION OF HISTOLOGICAL FINDINGS OF SINGLE SESSION ER:YAG SKIN FRACTIONAL RESURFACING WITH VARIOUS PASSES AND ENERGIES AND THE POSSIBLE CLINICAL IMPLICATIONS. LASERS Surg Med. 2008 Mar;40(3):171-7.
- Lee WR, Shen SC, Kuo-Hsien W, Hu CH, Fang JY. LASERS AND MICRODERMABRASION ENHANCE AND CONTROL TOPICAL DELIVERY OF VITAMIN C. J Invest Dermatol. 2003 Nov;121(5):1118-25.
- Gaspar, A., Gasti, G. A., & Medicine, A. (2013). TIGHTENING OF FACIAL SKIN USING INTRAORAL 2940 NM ER:YAG SMOOTH MODE. 2013(2), 17-20.

BIBLIOGRAPHICAL REFERENCES

LASER TREATMENT FOR INTIMATE AREAS Er:YAG 2,940-nm

- Gaviria JE, Lans L JA. LASER VAGINAL THIGHTENING (LVT) EVALUATION OF A NOVEL NONINVASIVE LASER TREATMENT FOR VAGINAL RELAXATION SYNDROME. J LASER and Health Academy. 2012, 1 59-66.
- 2. Vizintin Z et al. NOVEL MINIMALLY INVASIVE VSP ER: YAG LASER TREATMENTS IN GYNECOLOGY. J Laser and Health Academy. 2012, 1 46-58.
- Gaspar A, Brandi H; Gomez V, Luque D. EFFICACY OF ERBIUM:YAG LASER TREATMENT COMPARED TO TOPICAL ESTRIOL TREATMENT FOR SYMPTOMS OF GENITOURINARY SYNDRO-ME OF MENOPAUSE. LASERS Surg Med; 2016 Aug 22.
- 4. Fistonic N et al. MINIMALLY INVASIVE, NON-ABLATIVE ER:YAG LASER TREATMENT OF STRESS URINARY INCONTINENCE IN WOMEN A PILOT STUDY. LASERS Med Sci; 31(4): 635-43, 2016 May.
- Escribano T. TRATAMIENTO DEL SÍNDROME GENITOURINARIO DE LA MENOPAUSIA ME-DIANTE LÁSER FRACCIONADO CO2: UNA OPCIÓN TERAPÉUTICA EMERGENTE. Rev Chil Obstet Ginecol; 81(2): 138-151, Apr. 2016.

